
In the application of the ETKF to a system with large dimensions, R-localization 
must be imposed at individual grid points. To preserve dynamic balance, smooth 
transition of the ensemble weights from a grid point to next is essential; lack of 
smoothness results in loss of balance. Among the ETKF family, the LETKF (Hunt 
et al, 2007) is the only method that guarantees this smoothness by the use of 
symmetric 𝐖𝐿𝐸𝑇𝐾𝐹

𝑎  (see Section 2). 
 
 
 
 
 
 
 
 
 
 
 
To avoid the ensemble clustering (Section 3), a global rotation 𝐔 can be applied 
to the LETKF global analysis for improved performance: 
 
 
Where 𝐔 ∈ ℜ𝑀×𝑀 must be orthonormal 𝐔T𝐔 = 𝐈 and 𝐔T 𝟏 = 𝟏 (e.g. Sakov and 
Oke, 2008). This locally-symmetric globally-non-symmetric analysis scheme was 
implemented in the Lorenz 1996 model with satisfactory results.  
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2. A Mean-Preserving Non-Symmetric Ensemble Transform 
Kalman Filter (MPNS-ETKF) 

4. MNPS-ETKF with R-localization to avoid balance deterioration 

Abstract 

Kalman filtering is optimal when the forecast model is linear and the model error 
and observational error follow Gaussian statistics. Usually, these conditions are 
not perfectly fulfilled. How well they are approximated depends upon the length 
of the assimilation window and the magnitude of the model and observational 
error covariance. 
 
Previous works (Lawson and Hansen, 2004; Anderson, 2010) studied the behavior 
of the stochastic ensemble Kalman filter (EnKF Burgers et al, 1998) and 
[deterministic] ensemble square root filters (EnSRF, Tippett et al 2003) when 
nonlinear effects become important. A deformation of the 𝑀-member ensemble 
was observed in the case of EnSRFs; namely, an ensemble member becomes an 
outlier while the rest of the members collapse in a cluster (to preserve the 
variance), affecting the performance and the higher order moments of the 
ensemble. The stochastic EnKF doesn’t present this problem, but additional 
sampling noise is introduced due to the random number realizations, especially in 
small ensembles. 

Figure 1. Left: experiment with the Ikeda system and the serial EnSRF showing the 
low order clustering for both background and analysis ensembles at a single time, 
taken from Lawson and Hansen 2004. Right: experiment with the Lorenz 1963 
model and the Ensemble Adjustment Kalman Filter (EAKF) showing the ensemble 
clustering in the time evolution of the analysis ensemble for one variable, taken 
from Anderson 2010.   

The ETKF is a member of the EnSRF family. In this scheme, the analysis ensemble 
of perturbations 𝐗𝑎 ∈ ℜ𝑁×𝑀 is obtained by post-multiplying the background 
ensemble of perturbations 𝐗𝑏 ∈ ℜ𝑁×𝑀 by a matrix of weights 𝐖𝑎 ∈ ℜ𝑀×𝑀. The 
resulting 𝐗𝑎 = 𝐗𝑏𝐖𝑎 must fulfill two requisites: 
a) It must respect the Kalman filter covariance equation 𝐏𝑎 = 𝐈 − 𝐊𝐇 𝐏𝑏 
b) It must have mean zero, i.e. 𝐗𝑎𝟏 = 𝟎 
 
The original (one-sided) ETKF (Bishop et al, 2001) is based in the singular value 
decomposition of the multidimensional ratio of background and observational 
error covariance to form the transform matrix: 
 
 
The columns of 𝐂 are eigenvectors and 𝚪 contains eigenvalues in the diagonal. 
Although it clearly respects the covariance equation, this formulation doesn’t 
preserve the zero mean (the original purpose was adaptive sampling rather than 
data assimilation). A mean-preserving symmetric solution was proposed by Wang 
et al 2004 (spherical simplex) and Hunt et al 2007 (L[ocal]ETKF); it yields the 
transform matrix closest to the identity (Ott et al 2004): 
 
 
A general mean-preserving non-symmetric solution for the ETKF can be written 
as: 
 
𝐒 ∈ ℜ𝑀×𝑀 must be orthonormal 𝐒T𝐒 = 𝐈 and be such that𝐖𝑀𝑃𝑁𝑆−𝐸𝑇𝐾𝐹

𝑎  contains 
𝟏 as an eigenvector. Simple and cheap 𝑂 𝑀3  forms to construct this matrix are 
available (Bishop, pers comm). 
 
The MPNS-ETKF analysis at each assimilation instant can be considered a random 
rotation of the one-sided ETKF. Its effect can be viewed as a constrained 
resampling of the ensemble (which doesn’t add external noise as the stochastic 
EnKF).  
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3. Using the MPNS-ETKF to avoid low-order clustering 

Figure 2. Left: evolution of  𝑀 = 20 ensemble members observing/assimilating 
every 2∆. The ensemble clustering appears when using the symmetric ETKF (top) 
but not with the MPNS-ETKF (bottom). Right: ensemble update at successive 
assimilation instants with observation/assimilation every 5∆. For the symmetric 
ETKF (top), the larger ensemble member progressively drifts away (as a result of the 
nonlinear expansion in the forecast). For the MPNS-ETKF (bottom), the constant 
mixing/resampling of ensemble members from background to analysis prevents 
the largest member from drifting away and the appearance of low order clustering. 

We illustrate the effects of the MPNS-ETKF using  a simple univariate quadratic 
model: 
 
∆= 0.05 is the Euler time step of the discretized model and 𝑏 controls the degree 
of non-linearity. The unstable fixed point 𝑥∗ = 0 is set as the truth. For the set of 
experiments shown here, the observational error variance 𝑅 and the initial 

background variance 𝑃0
𝑏 were set to 1. 
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The MPNS-ETKF was satisfactorily implemented in the Lorenz 1963 model. 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Experiments using the 3-variable Lorenz 1963 model with 𝑀 = 10 
ensemble members and 𝐑 = 2𝐈 over 104 analysis cycles . Left: the mean RMSE  for 
both background and analysis are reduced with the MPNS-ETKF. Center: the 
skewness values of the analysis ensemble of the second variable; the MPNS-ETKF 
yields more symmetric ensembles. Right: rank histograms for the verification of 
the analysis ensembles with respect to the truth; for the symmetric ETKF the truth 
often falls outside the ensemble. 
 

We propose a modified Local Ensemble Transform Kalman Filter (LETKF) that avoids 
ensemble clustering without deteriorating balance. A constrained resampling is 
achieved by mean-preserving random rotations of the ensemble perturbations.  

1. Low order clustering in EnSRFs as a result of nonlinearity 

Figure 4. Experiment using the 40 
variable Lorenz 1996 model with 
𝑀 = 20 ensemble members and R-
localization with a localization radius  
λ = 4. The correlation of the local 
analysis weights at gridpoint with the 
weights in the rest of the gridpoints is 
shown for the LETKF analysis and 
MPNS-ETKF analysis. Only the 
symmetric ETKF guarantees a smooth 
transition.  


